(1)

- If $\cos^{-1}\left(\frac{1}{x}\right) = \theta$, then $\tan \theta =$ 1. (b) $\sqrt{x^2 + 1}$ (a) $\frac{1}{\sqrt{x^2-1}}$ (d) $\sqrt{x^2 - 1}$ (c) $\sqrt{1-x^2}$ $sin(cot^{-1} x)$ 2. (a) $\sqrt{1+x^2}$ (b) x (c) $(1 + x^2)^{-3/2}$ (d) $(1 + x^2)^{-1/2}$ $\cos\left(\sin^{-1}\frac{5}{13}\right) =$ 3. (a) $\frac{12}{13}$ (b) $-\frac{12}{13}$ (c) $\frac{5}{12}$ (d) None of these 4. The angle of elevation of the top of a tower from a
- 4. The angle of elevation of the top of a tower from a point A due south of the tower is α and from a point B due east of the tower is β . If AB = d, then the height of the tower is

(a)
$$\frac{d}{\sqrt{\tan^2 \alpha - \tan^2 \beta}}$$
 (b) $\frac{d}{\sqrt{\tan^2 \alpha + \tan^2 \beta}}$
(c) $\frac{d}{\sqrt{\cot^2 \alpha + \cot^2 \beta}}$ (d) $\frac{d}{\sqrt{\cot^2 \alpha - \cot^2 \beta}}$

5. A person standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is 60°. When he retires 40 *meters* from the bank, he finds the angle to be 30°. The breadth of the river is
(a) 20 m
(b) 40 m

(d)

(a) 20111	(0) 40 11
(c) 30 m	(d) 60 m

- If $f(x) = \frac{x}{x-1}$, then $\frac{f(a)}{f(a+1)} =$
 - (a) f(-a) (b) f
 - (c) f(a²)

6.

8.

7. If $f(x) = \cos(\log x)$, then

$f(x^2)f(y)$	$f(x^2) - \frac{1}{2} \left[f\left(\frac{x^2}{2}\right) + f\left(\frac{x^2}{y^2}\right) \right]$ has the value
(a) –2	(b) –1
(c) 1/2	(d) None of these
If $f(x) =$	$\begin{cases} x, \text{ when } 0 \le x \le 1\\ 2-x, \text{ when } 1 < x \le 2 \end{cases}, \text{ then } \lim_{x \to 1} f(x) = \end{cases}$
(a) 1	(b) 2

(c) 0 (d) Does not exist

 $\lim_{x \to 1} \frac{\log x}{x - 1} =$ 9. (a) 1 (b) -1 (c) 0 (d) ∞ **10.** If $f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 1}, \text{ for } x \neq 1\\ 2, \text{ for } x = 1 \end{cases}$, then (a) $\lim_{x\to 1^+} f(x) = 2$ (b) $\lim_{x\to 1^{-}} f(x) = 3$ (c) f(x) is discontinuous at x = 1(d) None of these **11.** Let [x] denotes the greatest integer less than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is (a) Continuous at x = 0 (b) Continuous in (-1,0) (c) Differentiable in (-1,1) (d) All the above **12.** The function defined by $f(x) = \begin{cases} |x-3|; & x \ge 1 \\ \frac{1}{4}x^2 - \frac{3}{2}x + \frac{13}{4}; & x < 1 \end{cases}$ is (a) Continuous at x = 1 (b) Continuous at x = 3(c) Differentiable at x = 1 (d) All the above 13. The maximum distance from the origin of coordinates to the point z satisfying the equation $\left|z+\frac{1}{z}\right|=a$ is (a) $\frac{1}{2}(\sqrt{a^2+1}+a)$ (b) $\frac{1}{2}(\sqrt{a^2+2}+a)$ (c) $\frac{1}{2}(\sqrt{a^2+4}+a)$ (d) None of these 14. Find the complex number *z* satisfying the equations $\left|\frac{z-12}{z-8i}\right| = \frac{5}{3}, \left|\frac{z-4}{z-8}\right| = 1$ (a) 6 (b) 6±8i (c) 6+8i, 6+17i(d) None of these **15.** If z_1, z_2, z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = |\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 1,$ then $|z_1 + z_2 + z_3|$ is (a) Equal to 1 (b) Less than 1 (c) Greater than 3 (d) Equal to 3 **16.** If $z_1 = 10 + 6i$, $z_2 = 4 + 6i$ and z is a complex number such that $amp\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$, then the value of

|z-7-9i| is equal to

2 www.tarainstitute.in (a) $\sqrt{2}$ (b) $2\sqrt{2}$ (c) $3\sqrt{2}$ (d) 2√3 17. The term independent of y in the expansion of $(y^{-1/6} - y^{1/3})^9$ is (a) 84 (b) 8.4 (c) 0.84 (d) - 84 The coefficient of the term independent of x in the 18. expansion of $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ is (b) $\frac{19}{54}$ (a) $\frac{1}{2}$ (c) $\frac{17}{54}$ (d) <u>-</u> **18.** In a train five seats are vacant, then how many ways can three passengers sit (a) 20 (b) 30 (c) 10 (d) 60 **19.** The product of any *r* consecutive natural numbers is always divisible by (b) r^2 (a) r! (c) *rⁿ* (d) None of these **21.** Centre of circle $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$ is (a) $\left(\frac{x_1+y_1}{2}, \frac{x_2+y_2}{2}\right)$ (b) $\left(\frac{x_1-y_1}{2}, \frac{x_2-y_2}{2}\right)$ (c) $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ (d) $\left(\frac{x_1 - x_2}{2}, \frac{y_1 - y_2}{2}\right)$ **22.** ABC is a triangle in which angle C is a right angle. If the coordinates of A and B be (-3, 4) and (3, -4)respectively, then the equation of the circumcircle of triangle ABC is (a) $x^2 + y^2 - 6x + 8y = 0$ (b) $x^2 + y^2 = 25$ (c) $x^2 + y^2 - 3x + 4y + 5 = 0$ (d) None of these **23.** Vertex of the parabola $y^2 + 2y + x = 0$ lies in the [MP PET 1989] quadrant (a) First (b) Second (c) Third (d) Fourth **24.** The equation $x^2 - 2xy + y^2 + 3x + 2 = 0$ represents (a) A parabola (b) An ellipse (c) A hyperbola (d) A circle **25.** For the ellipse $3x^2 + 4y^2 = 12$, the length of latus rectum is

TARA/NDA-NA/Mathematics/04 (a) $\frac{3}{2}$ (b) 3 (c) $\frac{8}{3}$ (d) $\sqrt{\frac{3}{2}}$ **26.** For the ellipse $\frac{x^2}{64} + \frac{y^2}{28} = 1$, the eccentricity is (a) $\frac{3}{4}$ (b) $\frac{4}{3}$ (c) $\frac{2}{\sqrt{7}}$ (d) $\frac{1}{3}$ 27. The length of transverse axis of the parabola $3x^2 - 4y^2 = 32$ is (a) $\frac{8\sqrt{2}}{\sqrt{3}}$ (b) $\frac{16\sqrt{2}}{\sqrt{3}}$ (d) $\frac{64}{2}$ (c) $\frac{3}{32}$ **28.** The directrix of the hyperbola is $\frac{x^2}{9} - \frac{y^2}{4} = 1$ (b) $y = 9/\sqrt{13}$ (a) $x = 9 / \sqrt{13}$ (c) $x = 6/\sqrt{13}$ (d) $y = 6/\sqrt{13}$ **29.** If $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$, then $\frac{dy}{dx} = \frac{3at^2}{1+t^3}$ (a) $\frac{t(2+t^3)}{1-2t^3}$ (b) $\frac{t(2-t^3)}{1-2t^3}$ (c) $\frac{t(2+t^3)}{1+2t^3}$ (d) $\frac{t(2-t^3)}{1+2t^3}$ **30.** If $x = t + \frac{1}{t}$, $y = t - \frac{1}{t}$, then $\frac{d^2y}{dx^2}$ is equal to (a) $-4t(t^2-1)^{-2}$ (b) $-4t^3(t^2-1)^{-3}$ (c) $(t^2+1)(t^2-1)^{-1}$ (d) $-4t^2(t^2-1)^{-2}$ **31.** If $x = t^2$, $y = t^3$, then $\frac{d^2y}{dx^2} =$ (b) $\frac{3}{(4t)}$ (a) $\frac{3}{2}$ (c) $\frac{3}{2(t)}$ (d) $\frac{3t}{2}$ **32.** If $x = a \sin \theta$ and $y = b \cos \theta$, then $\frac{d^2 y}{dx^2}$ is (a) $\frac{a}{b^2} \sec^2 \theta$ (b) $\frac{-b}{a} \sec^2 \theta$ (c) $\frac{-b}{a^2} \sec^3 \theta$ (d) $\frac{-b}{a^2} \sec^3 \theta$ **33.** Let $y = t^{10} + 1$ and $x = t^8 + 1$, then $\frac{d^2 y}{dx^2}$ is

(a) $\frac{5}{2}t$ (b) $20t^8$ (c) $\frac{5}{16t^6}$ (d) None of these **34.** If $3\sin(xy) + 4\cos(xy) = 5$, then $\frac{dy}{dx} = 5$ (b) $\frac{3\sin(xy) + 4\cos(xy)}{3\cos(xy) - 4\sin(xy)}$ (a) $-\frac{y}{y}$ (c) $\frac{3\cos(xy) + 4\sin(xy)}{4\cos(xy) - 3\sin(xy)}$ (d) None of these **35.** If $x^2e^y + 2xye^x + 13 = 0$, then dy/dx =(a) $\frac{2xe^{y-x} + 2y(x+1)}{x(xe^{y-x} + 2)}$ (b) $\frac{2xe^{x-y}+2y(x+1)}{x(xe^{y-x}+2)}$ (c) $-\frac{2xe^{y-x}+2y(x+1)}{x(xe^{y-x}+2)}$ (d) None of these 36. If A, B, C are three forces in equilibrium acting at a point and if 60°, 150° and 150° respectively denote the angles between A and B, B and C and C and A, then the forces are in proportion of (a) $\sqrt{3}$:1:1 (b) $1:1:\sqrt{3}$ (c) $1:\sqrt{3}:1$ (d) 1:2.5:2.5 **37.** If the angle α between two forces of equal magnitude is reduced to $\alpha - \frac{\pi}{3}$, then the magnitude of their resultant becomes $\sqrt{3}$ times of the earlier one. The angle α is (a) π/2 (b) $2\pi/3$ (C) $\pi/4$ (d) $4\pi/5$ 38. The resultant of two forces P and Q is R. If one of the forces is reversed in direction, the resultant becomes R', then (a) $R'^2 = P^2 + Q^2 + 2PQ\cos\alpha$ (b) $R'^2 = P^2 - Q^2 - 2PQ\cos\alpha$ (c) $R'^2 + R^2 = 2(P^2 + Q^2)$ (d) $R'^2 + R^2 = 2(P^2 - Q^2)$ 39. Forces proportional to AB, BC and 2CA act along the sides of triangle ABC in order, their resultants represented in magnitude and direction is (a) CÁ (b) \overrightarrow{AC} (c) \overrightarrow{BC} (d) \overrightarrow{CB} 40. ABCD is a parallelogram. A particle P is attracted towards A and C by forces proportional to PA and

PC respectively and repelled from B and D by forces proportional to PB and PD. The resultant of these forces is

TARA/NDA-NA/Mathematics/04 (a) 2PÁ (b) $2\overrightarrow{PB}$ (c) $2\overrightarrow{PC}$ (d) None of these 41. A particle is acted upon by three forces P, Q and R. It cannot be in equilibrium, if P: Q: R =(a) 1:3:5 (b) 3:5:7 (c) 5:7:9 (d) 7:9:11 42. Forces of 7 N, 5N and 3N acting on a particle are in equilibrium, the angle between the pair of forces 5 and 3 is (a) 30° (b) 60° (c) 90° (d) 120° If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ and $B = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$ 43. then the correct relation is (a) $A^2 = B^2$ (b) A+B=B-A(c) AB = BA(d) None of these 1 0 1 If $A = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$, then A is 44. 1 0 0 (a) Symmetric (b) Skew-symmetric (c) Non-singular (d) Singular [1 0 0 If $A = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$, then $A^2 =$ 45. a b -1 (a) Unit matrix (b) Null matrix (c) A (d) – A 1 + *x* 1 The roots of the equation $1 \quad 1+x$ 46. 1 = 0 are1 1 1 + x (a) 0, - 3 (b) 0, 0, - 3 (c) 0, 0, 0, -3(d) None of these 47. One of the roots of the given equation x+a b С b = 0 is X + Cа С а x+b(a) -(a+b)(b) -(b+c)(c) –a (d) -(a+b+c)48. If three geometric means be inserted between 2 and 32, then the third geometric mean will be (a) 8 (b) 4 (c) 16 (d) 12 If five G.M.'s are inserted between 486 and 2/3 then **49**. fourth G.M. will be (a) 4 (b) 6 (c) 12 (d) - 6

TARA =

4 www.tarainstitute.in **50.** The G.M. of roots of the equation $x^2 - 18x + 9 = 0$ is (a) 3 (b) 4 (c) 2 (d) 1 **51**. Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is (a) An equivalence relation (b) Reflexive and symmetric only (c) Reflexive and transitive only (d) Reflexive only **52.** $x^2 = xy$ is a relation which is (a) Symmetric (b) Reflexive (c) Transitive (d) None of these **53.** Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation R is (a) Reflexive (b) Transitive (d) A function (c) Not symmetric 54. The number of reflexive relations of a set with four elements is equal to (a) 2¹⁶ (b) 2¹² (c) 2⁸ (d) 2⁴ 55. Let S be the set of all real numbers. Then the relation $R = \{(a, b) : 1 + ab > 0\}$ on S is (a) Reflexive and symmetric but not transitive (b) Reflexive and transitive but not symmetric (c) Symmetric, transitive but not reflexive (d) Reflexive, transitive and symmetric (e) None of the above is true 56. If A is the set of even natural numbers less than 8 and B is the set of prime numbers less than 7, then the number of relations from A to B is (a) 2⁹ (b) 9^2 (c) 3^2 (d) 2⁹⁻¹ **57.** Of the members of three athletic teams in a school 21 are in the cricket team, 26 are in the hockey team and 29 are in the football team. Among them, 14 play hockey and cricket, 15 play hockey and football, and 12 play football and cricket. Eight play all the three games. The total number of members in the three athletic teams is (a) 43 (b) 76 (c) 49 (d) None of these

TARA/NDA-NA/Mathematics/04 58. In a class of 100 students, 55 students have passed in Mathematics and 67 students have passed in Physics. Then the number of students who have passed in Physics only is (a) 22 (b) 33 (c) 10 (d) 45 **59.** If $I_{i}m_{i}n$ are real and $I \neq m_{i}$ then the roots of the equation $(1-m)x^2 - 5(1+m)x - 2(1-m) = 0$ are (a) Complex (b) Real and distinct (c) Real and equal (d) None of these **60.** If the roots of the equation $x^2 - 8x + (a^2 - 6a) = 0$ are real, then (a) -2 < a < 8(b) 2 < a < 8(c) $-2 \le a \le 8$ (d) $2 \le a \le 8$ **61.** The roots of the equation $x^2 + 2\sqrt{3}x + 3 = 0$ are (b) Rational and equal (a) Real and unequal (c) Irrational and equal (d) Irrational and unequal 62. The roots of the guadratic equation $(a+b-2c)x^{2} - (2a-b-c)x + (a-2b+c) = 0$ are (a) a+b+c and a-b+c (b) $\frac{1}{2}$ and a-2b+c(c) a-2b+c and $\frac{1}{a+b-x}$ (d) None of these **63.** If α, β are the roots of $ax^2 + bx + c = 0$, then the equation whose roots are $2 + \alpha_1 2 + \beta$ is (a) $ax^2 + x(4a-b) + 4a - 2b + c = 0$ (b) $ax^2 + x(4a-b) + 4a + 2b + c = 0$ (c) $ax^{2} + x(b-4a) + 4a + 2b + c = 0$ (d) $ax^2 + x(b-4a) + 4a - 2b + c = 0$ **64.** If the ratio of the roots of $x^2 + bx + c = 0$ and $x^2 + qx + r = 0$ be the same, then (a) $r^2 c = b^2 q$ (b) $r^2 b = c^2 q$ (c) $rb^2 = cq^2$ (d) $rc^2 = bq^2$ **65.** If one root of $x^2 - x - k = 0$ is square of the other, then k =(a) $2 \pm \sqrt{3}$ (b) $3 \pm \sqrt{2}$ (c) $2 \pm \sqrt{5}$ (d) $5 \pm \sqrt{2}$ **66.** If S is a set of P(x) is polynomial of degree ≤ 2 such that P(0) = 0, P(1) = 1, $P'(x) > 0 \forall x \in (0, 1)$, then (a) S = 0(b) $S = ax + (1 - a)x^2 \quad \forall a \in (0, \infty)$

- (c) $S = ax + (1 a)x^2 \quad \forall a \in \mathbb{R}$
- (d) $S = ax + (1 a)x^2 \quad \forall a \in (0, 2)$

5	<u>N</u>	/ww.tarainstitute.c	om	TARA/NDA-N	A/Mathematics/04
67.	If α and β , α and γ , α and δ are the the equations $ax^2 + 2bx + c = 0$, $2bx^2 + cx + a$	roots of 76.	$1 + \cos 2x + \cos 2x + \cos x \cos x$	s4x + cos6x = s2xcos3x (b)	$4\sin x\cos 2x\cos 3x$
	$cx^{2} + ax + 2b = 0$ respectively, where a, b an positive real numbers, then $\alpha + \alpha^{2} =$	d c are 77 .	(c) $4\cos x\cos x$ If $\frac{\sin A - \sin x}{\cos C - \cos x}$	$\frac{2}{A} = \cot B$, then A	None of these B,C are in
	(a) -1 (b) 0 (c) abc (d) $a+2b+c$ (e) abc		(a) A.P. (c) H.P.	(b) (d)	G.P. None of these
68.	If <i>ST</i> and <i>SN</i> are the lengths of the subtangular the subnormal at the point $\theta = \frac{\pi}{2}$ on the	gent and 78. e curve	$\cos \frac{2\pi}{15} \cos \frac{4\pi}{15}$ (a) 1/2	$\cos\frac{8\pi}{15}\cos\frac{16\pi}{15} = $ (b)	1/4
	$x = a(\theta + \sin \theta), y = a(1 - \cos \theta), a \neq 1$, then (a) $ST = SN$ (b) $ST = 2 SN$	79.	(c) 1/8 The value of	(d) $\cos^2 \frac{\pi}{12} + \cos^2 \frac{\pi}{4} +$	1/16 $\cos^2 \frac{5\pi}{12}$ is
69.	(c) $ST^2 = a SN^3$ (d) $ST^3 = a SN$ The equation of the tangent to the curve $x =$	$= 2\cos^3\theta$	(a) $\frac{3}{2}$	(b)	$\frac{2}{3}$
	(a) $2x + 3y = 3\sqrt{2}$ (b) $2x - 3y = 3\sqrt{2}$ (c) $2x - 3y = 3\sqrt{2}$ (c) $2x - 3y = 3\sqrt{2}$	80	(c) $\frac{3+\sqrt{3}}{2}$	(d) $\pi \sin^3 \pi \sin^{5/7}$	$\frac{2}{3+\sqrt{3}}$
70.	(c) $3x + 2y = 3\sqrt{2}$ (d) $3x - 2y = 3\sqrt{2}$ The curve given by $x + y = e^{xy}$ has a tangent to the <i>y</i> -axis at the point	t parallel	(a) $\frac{1}{16}$	(b)	$\frac{\sqrt{2}}{16}$
71.	(a) $(0, 1)$ (b) $(1, 0)$ (c) $(1, 1)$ (d) $(-1, -1)$ $sin 15^\circ + cos 105^\circ =$	81.	(c) $\frac{1}{8}$	(d) resection of the di	$\frac{\sqrt{2}}{8}$
72.	(a) 0 (b) $2\sin 15^{\circ}$ (c) $\cos 15^{\circ} + \sin 15^{\circ}$ (d) $\sin 15^{\circ} - \cos 15^{\circ}$ The value $\cos 105^{\circ} + \sin 105^{\circ}$ is		origin and diagonals. If not the vertex	coordinate axis the side is of leng of square is	are drawn along the gth <i>a</i> , then one which is
	(a) $\frac{1}{2}$ (b) 1		(a) (<i>a</i> √2,0)	(b)	$\left(0,\frac{a}{\sqrt{2}}\right)$
73.	(c) $\sqrt{2}$ (d) $\overline{\sqrt{2}}$ The value of $\cos y \cos\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} - x\right)$	- y)cos x 82	(c) $\left(\frac{a}{\sqrt{2}}, 0\right)$	(d)	$\left(-\frac{a}{\sqrt{2}},0\right)$
	(2) (2) (2) (2) (2) (3) (2) (2) (2) (2) (3) (2) (3) (2) (3) (2) (3)		base are B (vertex A can	1,3) and C (- 2, be	7), the coordinates of
	(a) $x = 0$ (b) $y = 0$ (c) $x = y$ (d) $x = n\pi - \frac{\pi}{4} + y$. (n ∈ I)	(a) $(1, 6)$	(d)	$\left(-\frac{1}{2},5\right)$
74.	$\sin\left(\frac{\pi}{10}\right)\sin\left(\frac{3\pi}{10}\right) =$	83.	(6) (6)	$B(a t^2, -2a t)$ a	nd $C(a,0)$, then $2a$ is
75.	(a) $1/2$ (b) $-1/2$ (c) $1/4$ (d) 1 If $x \sin 45^{\circ} \cos^{2} 60^{\circ} = \frac{\tan^{2} 60^{\circ} \csc 30^{\circ}}{\sec 45^{\circ} \cot^{2} 30^{\circ}}$, then x	·= 84.	equal to (a) A.M. of C (c) H.M. of C If coordinates	CA and CB (b) CA and CB (d) of the points A a	G.M. of <i>CA</i> and <i>CB</i> None of these and <i>B</i> are (2, 4) and (4,
	(a) 2 (b) 4 (c) 8 (d) 16	TARA	AB = 3 AM,	y and point <i>M</i> is then the coordina	ates of <i>M</i> are

6		www.tarainstitute	in TARA/NDA-NA/Mathematics/04
	(a) $\left(\frac{8}{3}, \frac{10}{3}\right)$ (b) $\left(\frac{10}{3}, \frac{14}{4}\right)$ (c) $\left(\frac{10}{3}, \frac{6}{3}\right)$ (d) $\left(\frac{13}{3}, \frac{10}{4}\right)$	92.	$\int_{0}^{\pi} \frac{\sin\left(n+\frac{1}{2}\right)x}{\sin x} dx , \ (n \in N) \text{ equals}$
85. 86.	The point of trisection of the line joining to (0, 3) and (6, -3) are (a) (2, 0) and (4, -1) (b) (2, -1) and (4, -1) (c) (3, 1) and (4, -1) (d) (2, 1) and (4, -1) The sides AB, BC, CD and DA of a quadritic x + 2y = 3, x = 1, x - 3y = 4, 5x + 1 respectively. The angle between diagonal	the points 4,1) 1) ilateral are -y+12=0 s. AC and 94.	(a) $n\pi$ (b) $(2n+1)\frac{\pi}{2}$ (c) π (d) 0 If $\int_{0}^{1} e^{x^{2}}(x-\alpha) dx = 0$, then (a) $1 < \alpha < 2$ (b) $\alpha < 0$ (c) $0 < \alpha < 1$ (d) None of these The degree of the differential equation
87.	BD is (a) 45° (b) 60° (c) 90° (d) 30° Given vertices $A(1, 1), B(4, -2)$ and $C(5, 5)$ of a then the equation of the perpendicular drop C to the interior bisector of the angle A is (a) $y-5=0$ (b) $x-5=0$	a triangle, oped from 95 .	$3\frac{d^2y}{dx^2} = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{3/2}$ is (a) 1 (b) 2 (c) 3 (d) 6 The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where <i>c</i> is a positive parameter, is of
88.	(c) $y+5=0$ (d) $x+5=0$ If the straight line through the point $P(3, 4)$ angle $\frac{\pi}{6}$ with the x-axis and meets 12x+5y+10=0 at Q, then the length PQ is (a) $\frac{132}{12\sqrt{3}+5}$ (b) $\frac{132}{12\sqrt{3}-5}$ (c) $\frac{132}{5\sqrt{3}+12}$ (d) $\frac{132}{5\sqrt{3}-12}$	makes an the line 96. 97.	(a) Order 1 (b) Order 2 (c) Degree 3 (d) Degree 4 The order of the differential equation whose general solution is given by $y = C_1 e^{2x+C_2} + C_3 e^x + C_4 \sin(x+C_5)$ is (a) 5 (b) 4 (c) 3 (d) 2 The order and degree of the differential equation $\left(-\frac{dy}{3} + \frac{2}{3} + \frac{d^3y}{3} + \frac{d^3y}{3}$
89. 90.	If $\int \frac{2x+3}{(x-1)(x^2+1)} dx = \log_e \left\{ (x-1)^{\frac{5}{2}} (x^2+1)^a \right\} - \frac{1}{2} \tan \frac{1}$	n ⁻¹ x + A , e value of 98. + C, then	$ \left(1 + 3\frac{dy}{dx} \right)^{2} = 4\frac{dy}{dx^{3}} \text{ are} $ (a) $1, \frac{2}{3}$ (b) $3, 1$ (c) $3, 3$ (d) $1, 2$ The degree of the differential equation $ \frac{d^{2}y}{dx^{2}} + 3\left[\frac{dy}{dx}\right]^{2} = x^{2} \log\left[\frac{d^{2}y}{dx^{2}}\right] \text{ is} $ (a) 1 (b) 2
91.	the values of a and b are respectively (a) $1/2$, $3/4$ (b) -1 , $3/2$ (c) 1, $3/2$ (d) $-1/2$, $3/4$ The area bounded by the curves $y = \ln x$, $y = \ln x $ and $y = \ln x $ is (a) 4 sq. unit (b) 6 sq. unit (c) 10 sq. unit (d) None of these	99. <i>y</i> = ln <i>x</i> , se	(c) 3 (d) None of these The differential equation of the family of curves $y = Ae^{3x} + Be^{5x}$, where A and B are arbitrary constants, is (a) $\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 15y = 0$ (b) $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$ (c) $\frac{d^2y}{dx^2} - \frac{dy}{dx} + y = 0$ (d) None of these

www.tarainstitute.com

100. The probabilities that a student passes in Mathematics, Physics and Chemistry are m, p and c respectively. On these subjects, the student has a 75% chance of passing in at least one, a 50% chance of passing in at least two and a 40% chance of passing in exactly two. Which of the following relations are true

(a)
$$p + m + c = \frac{19}{20}$$
 (b) $p + m + c = \frac{27}{20}$
(c) $pmc = \frac{1}{10}$ (d) $pmc = \frac{1}{4}$

101. One bag contains 5 white and 4 black balls. Another bag contains 7 white and 9 black balls. A ball is transferred from the first bag to the second and then a ball is drawn from second. The probability that the ball is white, is

(a)	8 17	(b)	40 153
(c)	<u>5</u> 9	(d)	$\frac{4}{9}$

102. Two numbers are selected at random from the numbers 1, 2, *n*. The probability that the difference between the first and second is not less than *m* (where 0 < m < n), is

(a)
$$\frac{(n-m)(n-m+1)}{(n-1)}$$
 (b) $\frac{(n-m)(n-m+1)}{2n}$
(c) $\frac{(n-m)(n-m-1)}{2n(n-1)}$ (d) $\frac{(n-m)(n-m+1)}{2n(n-1)}$

103. Three groups *A*, *B*, *C* are competing for positions on the Board of Directors of a company. The probabilities of their winning are 0.5, 0.3, 0.2 respectively. If the group *A* wins, the probability of introducing a new product is 0.7 and the corresponding probabilities for group *B* and *C* are 0.6 and 0.5 respectively. The probability that the new product will be introduced, is

(a) 0.18	(b) 0.35
(c) 0.10	(d) 0.63

104. Consider two events A and B such that $P(A) = \frac{1}{4}$, $P\left(\frac{B}{A}\right) = \frac{1}{2}$, $P\left(\frac{A}{B}\right) = \frac{1}{4}$. For each of the

following statements, which is true

- $I. \qquad P(A^c / B^c) = \frac{3}{4}$
- II. The events A and B are mutually exclusive
- III. $P(A / B) + P(A / B^c) = 1$
- (a) I only (b) I and II
- (c) I and III (d) II and III

- **105.** A purse contains 4 copper coins and 3 silver coins, the second purse contains 6 copper coins and 2 silver coins. If a coin is drawn out of any purse, then the probability that it is a copper coin is
 - (a) 4/7 (b) 3/4 (c) 37/56 (d) None of these
- 106. The points D, E, F divide BC, CA and AB of the triangle ABC in the ratio 1 : 4, 3 : 2 and 3 : 7
 - respectively and the point *K* divides *AB* in the ratio 1:3, then $(\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}) : \overrightarrow{CK}$ is equal to
 - (a) 1:1 (b) 2:5
 - (c) 5:2 (d) None of these
- **107.** If two vertices of a triangle are $\mathbf{i} \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$, then the third vertex can be
 - (a) i + k (b) i 2j k
 - (c) i k (d) 2i j

(e) All the above

- **108.** If **a** of magnitude 50 is collinear with the vector $\mathbf{b} = 6\mathbf{i} 8\mathbf{j} \frac{15 \mathbf{k}}{2}$, and makes an acute angle with the positive direction of *z*-axis, then the vector **a** is equal to
 - (a) 24i 32j + 30k (b) -24i + 32j + 30k(c) 16i - 16j - 15k (d) -12i + 16j - 30k

109. If three non-zero vectors are $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$, $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ and $\mathbf{c} = c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$. If **c** is the unit vector perpendicular to the vectors **a** and **b** and

the angle between **a** and **b** is $\frac{\pi}{6}$, then $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$

is equal to

- (a) 0 (b) $\frac{3(\Sigma a_1^2)(\Sigma b_1^2)(\Sigma c_1^2)}{4}$ (c) 1 (d) $\frac{(\Sigma a_1^2)(\Sigma b_1^2)}{4}$
- **110.** Let the unit vectors **a** and **b** be perpendicular and the unit vector **c** be inclined at an angle θ to both **a** and **b**. If **c** = α **a** + β **b** + γ (**a** × **b**), then
 - (a) $\alpha = \beta = \cos \theta$, $\gamma^2 = \cos 2\theta$
 - (b) $\alpha = \beta = \cos \theta$, $\gamma^2 = -\cos 2\theta$
 - (c) $\alpha = \cos \theta$, $\beta = \sin \theta$, $\gamma^2 = \cos 2\theta$
 - (d) None of these
- **111.** The vector **a** + **b** bisects the angle between the vectors **a** and **b**, if
 - (a) | **a** |=| **b** |

TARA =

TARA/NDA-NA/Mathematics/04

 $\left(8\right)$

TARA/NDA-NA/Mathematics/04

- (b) $|\mathbf{a}| = |\mathbf{b}|$ or angle between \mathbf{a} and \mathbf{b} is zero
- (c) $|\mathbf{a}| = m |\mathbf{b}|$
- (d) None of these
- **112.** The points O, A, B, C, D are such that $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = 2\mathbf{a} + 3\mathbf{b}$ and $\overrightarrow{OD} = \mathbf{a} - 2\mathbf{b}$. If
 - $|\mathbf{a}| = 3|\mathbf{b}|$, then the angle between \overrightarrow{BD} and \overrightarrow{AC} is
 - (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$
 - (c) $\frac{\pi}{6}$ (d) None of these
- **113.** If $\vec{A} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\vec{B} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\vec{C} = 3\mathbf{i} + \mathbf{j}$, then the value of *t* such that $\vec{A} + t\vec{B}$ is at right angle to vector \vec{C} , is
 - (a) 2 (b) 4
 - (c) 5 (d) 6
- **114.** Let **b** = 4**i** + 3**j** and **c** be two vectors perpendicular to each other in the *xy*-plane. All vectors in the same plane having projections 1 and 2 along **b** and **c** respectively, are given by
 - (a) 2i j, $\frac{2}{5}i + \frac{11}{5}j$ (b) 2i + j, $-\frac{2}{5}i + \frac{11}{5}j$ (c) 2i + j, $-\frac{2}{5}i - \frac{11}{5}j$ (d) 2i - j, $-\frac{2}{5}i + \frac{11}{5}j$
- **115.** The radius of the circle in which the sphere $x^2 + y^2 + z^2 + 2x 2y 4z 19 = 0$ is cut by the plane x + 2y + 2z + 7 = 0 is (a) 1 (b) 2
 - (d) 1 (b) 2 (c) 3 (d) 4
- **116.** The equation of motion of a rocket are: x = 2t, y = -4t, z = 4t where the time 't is given in seconds, and the co-ordinates of a moving point in kilometers. What is the path of the rocket? At what distance will be the rocket be from the starting point O(0, 0, 0) in 10 seconds
 - (a) Straight line, 60 km (b) Straight line, 30 km
 - (c) Parabola, 60 km (d) Ellipse, 60 km
- **117.** The plane lx + my = 0 is rotated an angle α about its line of intersection with the plane z = 0, then the equation to the plane in its new position is
 - (a) $lx + my \pm z \sqrt{(l^2 + m^2)} \tan \alpha = 0$
 - (b) $lx my \pm z\sqrt{(l^2 + m^2)} \tan \alpha = 0$

(c)
$$lx + my \pm z\sqrt{(l^2 + m^2)\cos\alpha} = 0$$

(d)
$$lx - my \pm z \sqrt{(l^2 + m^2) \cos \alpha} = 0$$

- **118.** The distance between two points *P* and *Q* is *d* and the length of their projections of *PQ* on the coordinate planes are d_1, d_2, d_3 . Then $d_1^2 + d_2^2 + d_3^2 = kd^2$ where '*k*' is
 - (a) 1 (b) 5
 - (c) 3 (d) 2
- **119.** If P_1 and P_2 are the lengths of the perpendiculars from the points (2,3,4) and (1,1,4) respectively from the plane 3x-6y+2z+11=0, then P_1 and P_2 are the roots of the equation

(a) $P^2 - 23P + 7 = 0$ (b) $7P^2 - 23P + 16 = 0$

- (c) $P^2 17P + 16 = 0$ (d) $P^2 16P + 7 = 0$
- **120.** The edge of a cube is of length '*a*' then the shortest distance between the diagonal of a cube and an edge skew to it is

(a)
$$a\sqrt{2}$$
 (b) a

(c) $\sqrt{2}/a$

INSTITUT

(b) a (d) $a/\sqrt{2}$